HUMAN DECOMPOSITION SCENT DETECTION

John Grebenkemper
Institute for Canine Forensics

www.hhrdd.org

johng@hhrdd.org
AREAS COVERED

- Canine Scent Detection
- Human Decomposition
- Videos of Dogs
- Accuracy of Alerts
- Probability of Detection
- Probability of False Positive
- How to Select a HHRD Search Team
- Future Directions
CANINE SCENT DETECTION

- Dog can be trained to find many things by scent
 - Drugs
 - Explosives
 - Cancer
 - Bed Bugs
 - Live People
 - Recent Corpses
 - Old Human Burials (HHRD)

- Types of HHRD Searches
 - Locate Cemetery Boundaries
 - Locate Native American Burial Areas
 - Locate Unmarked Graves
 - Locate Where People Died and Weren’t Buried
CANINE NOSE

• Human
 • 5 Million olfactory receptors
 • Sensitivity: Parts per million
 • Teaspoon sugar in cup of water
 • Single odor overwhelms human nose
 • Can’t tell direction

• Canine
 • 300 Million olfactory receptors
 • Sensitivity: One part per trillion
 • Teaspoon sugar in million gallons of water
 • Multiple odors simultaneously
 • Directional scenting
CANINE NOSE

- Specially constructed to maximize scent detection
- Breathes in through nostrils
- Breathes out though slits in side of nose
- Doesn’t disturb scent in front of nose
HUMAN DECOMPOSITION

• When a person dies
 • Their body breaks down into numerous volatile organic compounds (VOC’s)
 • The VOC’s saturate the bones and surrounding soil
 • VOC’s are detectable for centuries after death
 • Human decomposition contains different VOC’s than animal decomposition
 • Burials can be detected even after the bones are removed
 • If the body decomposes on the surface, animal activity dismembers body and scent is scattered around the death location
<table>
<thead>
<tr>
<th>Rank</th>
<th>Compound</th>
<th>Concentration (ppt*)</th>
<th>Compound Detection BADD† Range</th>
<th>BADDs Indicating Prominent Abundance Maxima</th>
<th>Compound also Detected in Odor of Specified Mammalian Bone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Max.</td>
<td>Control Maximum</td>
<td>Earliest</td>
<td>Latest</td>
</tr>
<tr>
<td>1</td>
<td>Carbon tetrachloride</td>
<td>83</td>
<td>5</td>
<td>309</td>
<td>>18,000</td>
</tr>
<tr>
<td>2</td>
<td>Toluene</td>
<td>218</td>
<td>9</td>
<td>300</td>
<td>>18,000</td>
</tr>
<tr>
<td>3</td>
<td>Ethane, 1,1,2-trichloro-1,2,2-trifluoro</td>
<td>122</td>
<td>5</td>
<td>309</td>
<td>16,932</td>
</tr>
<tr>
<td>4</td>
<td>Tetrachloroethene†</td>
<td>148</td>
<td>7</td>
<td>309</td>
<td>>18,000</td>
</tr>
<tr>
<td>5</td>
<td>Naphthalene‡</td>
<td>229</td>
<td>2</td>
<td>309</td>
<td>>18,000</td>
</tr>
<tr>
<td>6</td>
<td>Trichloromonofluoromethane†</td>
<td>120</td>
<td>8</td>
<td>309</td>
<td>>18,000</td>
</tr>
<tr>
<td>7</td>
<td>Dimethyl disulfide</td>
<td>58</td>
<td>1</td>
<td>309</td>
<td>16,932</td>
</tr>
<tr>
<td>8</td>
<td>1,4 dimethyl benzene</td>
<td>176</td>
<td>4</td>
<td>475</td>
<td>>18,000</td>
</tr>
<tr>
<td>9</td>
<td>Benzene</td>
<td>98</td>
<td>4</td>
<td>309</td>
<td>>18,000</td>
</tr>
<tr>
<td>10</td>
<td>Dichlorodifluoromethane</td>
<td>109</td>
<td>n.d.</td>
<td>343</td>
<td>16,932</td>
</tr>
<tr>
<td>11</td>
<td>1,2 dimethyl benzene</td>
<td>287</td>
<td>5</td>
<td>343</td>
<td>>18,000</td>
</tr>
<tr>
<td>12</td>
<td>Chloroform‡</td>
<td>83</td>
<td>9</td>
<td>309</td>
<td>16,932</td>
</tr>
<tr>
<td>13</td>
<td>Ethyl benzene</td>
<td>102</td>
<td>4</td>
<td>309</td>
<td>>18,000</td>
</tr>
<tr>
<td>14</td>
<td>Styrene†</td>
<td>29</td>
<td>n.d.</td>
<td>308</td>
<td>>18,000</td>
</tr>
<tr>
<td>15</td>
<td>Dimethyl trisulfide</td>
<td>76</td>
<td>n.d.</td>
<td>309</td>
<td>16,932</td>
</tr>
<tr>
<td>16</td>
<td>Decanal</td>
<td>36</td>
<td>5</td>
<td>475</td>
<td>>18,000</td>
</tr>
<tr>
<td>17</td>
<td>Sulfur dioxide‡</td>
<td>11,373</td>
<td>3</td>
<td>343</td>
<td>7,280</td>
</tr>
<tr>
<td>18</td>
<td>Nonanal</td>
<td>10</td>
<td>3</td>
<td>400</td>
<td>>18,000</td>
</tr>
<tr>
<td>19</td>
<td>Carbon disulfide</td>
<td>34</td>
<td>n.d.</td>
<td>309</td>
<td>>18,000</td>
</tr>
<tr>
<td>20</td>
<td>Hexane</td>
<td>117</td>
<td>3</td>
<td>590</td>
<td>7,280</td>
</tr>
<tr>
<td>21</td>
<td>Benzenemethanol, alpha, alpha, dimethyl</td>
<td>66</td>
<td>n.d.</td>
<td>167</td>
<td>7,280</td>
</tr>
<tr>
<td>22</td>
<td>Trichloroethene†</td>
<td>7</td>
<td>n.d.</td>
<td>309</td>
<td>4,653</td>
</tr>
<tr>
<td>23</td>
<td>1-ethyl, 2-methyl benzene</td>
<td>80</td>
<td>1</td>
<td>536</td>
<td>4,653</td>
</tr>
<tr>
<td>24</td>
<td>1-methoxypropyl benzene†</td>
<td>10</td>
<td>n.d.</td>
<td>309</td>
<td>3,896</td>
</tr>
<tr>
<td>25</td>
<td>Hexadecanoic acid, methyl ester‡</td>
<td>296</td>
<td>n.d.</td>
<td>762</td>
<td>4,432</td>
</tr>
<tr>
<td>26</td>
<td>1,2 Benzenedicarboxylic acid, diethyl ester</td>
<td>91</td>
<td>n.d.</td>
<td>536</td>
<td>7,280</td>
</tr>
<tr>
<td>27</td>
<td>Undecane</td>
<td>178</td>
<td>n.d.</td>
<td>535</td>
<td>>18,000</td>
</tr>
<tr>
<td>28</td>
<td>Methenamine</td>
<td>382</td>
<td>n.d.</td>
<td>476</td>
<td>7,280</td>
</tr>
<tr>
<td>29</td>
<td>Dichlorotetrafluoroethane‡</td>
<td>15</td>
<td>n.d.</td>
<td>309</td>
<td>4,432</td>
</tr>
<tr>
<td>30</td>
<td>1,1-dichloro-1-fluoroethane‡</td>
<td>4</td>
<td>n.d.</td>
<td>309</td>
<td>3,896</td>
</tr>
</tbody>
</table>

n.d., none detected.
* ppt, parts per trillion.
† BADD, burial accumulated degree days.
‡ Not detected during surface decomposition.
• Most animals have similar decomposition VOC’s

• We have no idea which VOC’s dogs detect to determine human decomposition

• In this table humans are closest to chickens

<table>
<thead>
<tr>
<th>Compound classification</th>
<th>Human</th>
<th>Cow</th>
<th>Chicken</th>
<th>Pig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acid/acid esters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propanoic acid</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butanoic acid, 2-methyl</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butanoic acid, 3-methyl</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pentanoic acid</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexanoic acid</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexanoic acid, 2-methyl</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexanoic acid, methyl ester</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butanoic acid, butyl ester</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexanoic acid, ethyl ester</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Octanoic acid, methyl ester</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexanoic acid, pentyl ester</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexanoic acid, hexyl ester</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcohols</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-Pentanol</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Hexanol</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-Octene-3-ol</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Octene-3-ol</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-Hexanol, 2-ethyl</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aldehydes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Hexenal</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexanal</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,4-Heptadienal</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Heptenal</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heptanal</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Octenal</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Octanal</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,4-Nona dienal</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Nona dienal</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonanal</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decanal</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Halogen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aromatic hydrocarbons</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-Xylene</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indole</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Pentyl-furan</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyrazine, trimethyl</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ketones</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclohexanone</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Heptanone</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>3,5-Octadien-2-one</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Nonanone</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Decanone</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Undecanone</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfides</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethyl disulfide</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkanes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexane</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1-Undecene</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undecane</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dodecane</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tridecane</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amine...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trimethylamine</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CANINE SCENT DETECTION

- Historic Human Remains Detection (HHRD) dogs are trained to find old human burials
- Dogs detect VOC’s when they evaporate into the air column
- Accuracy limited by path VOC’s take to reach the surface
- Dogs can work in areas not accessible to more traditional geophysical techniques
- Dogs can detect very old human burials
 - Oldest burial detected by ICF dogs radiocarbon dated at 9,000 years
CANINE LIMITATIONS

• Ground must be permeable for scent to reach the surface
 • Can’t detect burials through solid surfaces except at cracks

• Ground temperature critical factor
 • Sun heats ground more than air
 • Best working range is 40-80°F ground temperature
 • Can work at 100°F with some loss in Probability of Detection

• Moisture in ground can help
 • Evaporation pulls scent to surface

• Light wind is good; strong wind blows scent away

• Light rain is not a problem; heavy rain seals scent in soil
CANINE TRAINING

• Training can start at any age
 • Many dogs are imprinted with scent as a puppy
 • Oldest dog to certify in ICF started training at 7 years

• Dog must have desire to work
 • Most dogs come from working dog lines
 • Other breeds have been trained

• Different training techniques can be successful
 • Most are based on positive reinforcement
 • Dog finds scent and rewarded with treat or toy
CEMETERY TESTING

• Dogs must be tested to determine accuracy detecting graves
 • Dogs work site with no information about location
 • Grave location determined by geophysical or excavation

• Studies
 • 19th Century Cemetery
 • Army Corps of Engineers Study
 • Native American Burial Area
19th Century Cemetery

- Dog Alerts Shown in Red
- Grave Shafts Shown in Gray
 - Determined by GPR
- Burials Likely Shallow, < 1m
- No Visible Burial Markers

Key Points
- Dogs do not find every burial
- Most alerts are close, but a few are larger misses
- RMS Error is ~2 meters
FORT GORDON CEMETERIES

• Dogs tested by Army Corps of Engineers
• Early 20th Century Family Graveyards
• No surface indication of burial locations
• Grave shaft positions determined by Ground Penetrating Radar and magnetic gradiometer
• Some of the anomalies are likely not burials
• GPR can’t distinguish burial shafts from other ground disturbances
• Report available on ICF website
CEMETERY 9

- Soil is loose fine sand
- Cemetery fence shown on map
- The dogs indicate there may be additional burials northwest of the road
- This northwest area is forested and not surveyed using geophysical methods
CEMETERY 20

- Located in a wooded area
- The GPR data less consistent than other sites
- Some of these anomalies less likely to be real graves
- Most alerts within 4 meters of possible grave
CEMETERY 26

- Site is a forested area
- Anomalies on the east side are most likely to be graves
- Only two dogs alerted at this site, both on eastern side
CEMETERY 31

- Wooded area with some bricks embedded in the surface
- Highly likely that burials are present in this area
- All of the dogs alerted near suspected graves
- Several alerts 10 meters from any suspected grave
CEMETERY 34

- Approximately 30 GPR anomalies identified as possible graves
- The dog alerts clustered in the southern half of the search area
FORT GORDON CEMETERIES

• Army Corps of Engineers Conclusions
 • Dogs alerted within 1 meter of a possible graves in all of the cemeteries
 • 61% of the alerts were within 4 meters of a possible grave
 • Dog teams are an effective way to survey a large area
 • Dogs are not effective at locating individual burials
 • Geophysical survey can then focus on areas identified by the dogs as containing human burials

• Overall statistics of Fort Gordon cemetery searches
 • RMS Error: 3.8 meters
 • Median of alert errors: 2.8 meters
 • Maximum error: 13 meters
NATIVE AMERICAN BURIAL AREA

- Graves 500-600 years old
- Burials excavated
- Likely shallow burials
- Burial 68 clearly missed
- RMS Error 1.6 meters
PROBABILITY OF DETECTION

• For a Dog To Detect a Grave
 • Scent Must Reach Air Column

• Probability of Detecting Grave Varies
 • Age of Burial
 • Soil Conditions
 • Soil Must Allow VOC’s to Evaporate
 • Local Weather
 • Air & Ground Temperature, Humidity, Wind, Sun, Rain
 • Depth of Burial

• Impossible to measure due to unknown location of old graves
PROBABILITY OF FALSE POSITIVE

- Not All Alerts Are Correct
- Scent Can Collect Downwind From a Source
- Dogs Can Be Fooled By a Combination of Scents Close To Their Trained Scent
- Dogs and Humans Can Get Frustrated
BOX SEARCH EXPERIMENT

• Test for False Positive Rate
• Large Collection in Boxes
 • Archaeology collection, some from area of graves
 • Checked for decomposition scent by 3 dogs
• 182 Boxes Searched
 • 7 had alerts by all 3 dogs
 • 7 had alerts by 2 dogs
 • 8 had alerts by 1 dog
 • 160 had no alerts
BOX SEARCH EXPERIMENT

• If Single Dog Alerts Incorrect
 • Can estimate Detection & False Positive Rates
 • Probability False Positive 4.4%
 • Probability of Detection 83%
CURSE OF FALSE POSITIVES

- Dogs can be influenced by handler beliefs
- Experiment at UC Davis to test this bias
 - 18 handler/dog teams tested in two separate runs in four areas
 - Dogs certified for either drug or explosive detection
 - Handlers falsely told that the test area contained up to three sources of their trained scent; no scent sources were present
 - 85% of the tests had one or more alerts (False Positive)
- Significant issue for search dogs
- ICF has training procedures to minimize False Positives
 - Dogs must work areas with no sources without alerts
 - Some of these tests are blind to the handler
SUMMARY GRAVE DETECTION

• Dogs can find human burials thousands of years old

• Most alerts within 4 meters of burial
 • General rule is RMS Error is twice burial depth
 • Statistically 68% of the alerts should be within the RMS Error

• Do not alert at all burials when close together, such as cemetery

• Working multiple dogs
 • Improves Probability of Detection
 • Decreases Probability of False Positive

• Dogs can work 1 to 2 acres per hour
 • Generally require a rest break of 1 hour for each hour worked
ICF CERTIFICATION

• Required Skills
 • Efficacy problem to locate multiple target scents (10 per year) with efficacy >75%
 • Grave detection in cemetery (6 per year)
 • Problem with negative sources (4 per year)
 • One acre test for either 0 or 1 human bones (2/year)
 • Search area with no sources for 45 minutes (2/year)
 • Locate 10 human teeth in 15 minutes (2/year)

• Training Requirements
 • Training is scheduled 3 times per week
 • Regularly attend training
 • Work at least 75 training problems per year
HOW TO SELECT A SEARCH TEAM

• Not All Search Teams Are Effective At HHRD

• Hiring Agency Must Ask Questions
 • Are dogs certified to a standard? Who evaluates the dogs?
 • Have the dogs been tested by a professional organization?
 • What target scents are the dogs trained to find (fewer is better)?
 • What professional papers have been published on canine projects?
 • Do you prepare Client Reports? Samples?
 • How many projects per year?
 • Who are your clients?
 • References?
Max Planck Institute for Evolutionary Anthropology

- Developed a method to recover human DNA from soil samples
- Recovered Neanderthal and Denisovan mtDNA fragments from soil in caves with age of ~100,000 years
- DNA fragment density about the same as in human bone
- DNA fragments reconstructed in computer analysis
- Could eventually be applied to nuclear DNA
DNA RECOVERY

• When a human body decomposes
 • Releases DNA fragments into the surrounding soil
 • Also releases the VOC’s that the dogs detect

• HHRD canines may also be used as DNA detectors

• ICF in discussions about a project to use this method

• Cost is currently very expensive
 • Likely to drop to reasonable level within next few years
 • Ability to identify individuals in unknown burials
QUESTIONS